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ABSTRACT:
This report presents a method for estimating infective disease-dynamics parameters when contact rates are uneven,
surveillance data are not systematically sampled, and cases are underreported. An important parameter for
predictive infectious disease models is the effective reproductive number (Re). Re determines the rate at which new
infections occur and respond to intervention strategies, such as vaccination, quarantine, and social distancing.
However, accurate estimation of Re is complicated by shortcomings in surveillance data collection, and these
shortcomings are difficult to mitigate through changes in sampling methods. The author proposes that estimation of
Re is not necessary to model changes in disease dynamics; rather, the basic reproductive number R0 may be used
along with contact parameters derived from network characteristics within the host population. Further, estimates
of R0 can be derived from imperfect surveillance data through application of hierarchical methods that correct for
underreporting by using explicit estimates of detection probabilities. A hierarchical data-assimilative method for
improving parameter estimates in predictive models when data are imperfectly collected is demonstrated in this
report. Accurate estimates of changes in disease dynamics can inform management decisions and mitigation
strategies.

Figure 2. Compartments of the SEIR Model.
A set of 4 categories useful for describing the state of infection within hosts

includes 1) Susceptible (S): hosts that can become infected, but have not yet
been exposed to the disease to the disease, 2) Exposed (E): latent hosts that
have recently acquired the disease but are not yet infectious, 3) Infective (I):
hosts that are able to spread disease to others, and 4) Recovered (R): hosts that
have developed immunity so can no longer transmit the disease. Models
containing these categories are called SEIR models (1;2). SEIR models usually
require an assumption that all hosts that have never had the disease are equally
likely to become infected, the well-mixed population assumption. Models that
relax this assumption are called network models. Parameterizing network
models usually requires extensive contact-tracing records. EDDIS is an
implicit network model, where network characteristics are inferred from
surveillance data and contact tracing data is not required. Because natural
populations are not well-mixed, the number of hosts within the S class is
depends on clustering of hosts (Figure 1). These clusters are called nodes (3).
Therefore, the size of class S is lower than the total population size. A system
of differential equations describing SEIR dynamics is given below.
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Equations 1:4 System of differential equations for SEIR dynamics.
S,E,I,R are the counts of hosts in each of the compartmental model classes,

as given above (Figure2). The birth rate is ν. β is the epidemic growth rate. The
rate of transition from exposed to infective is σ. The death rate is µ. The
recovery rate is γ. The cumulative case count is the sum of I and R, and can
frequently be found in surveillance reports. β is a function of R0,which can be
estimated using EDDIS (4), which is written in R software (5), and uses the R
differential equation solver deSolve (6).

METHODS

Hierarchical models were used to correct underreporting, in cumulative case
counts and were extended so as not to require an assumption of homogeneous
detection (7). A method for estimating detection probability using predicted
values from SEIR models and count data from surveillance is found using
Isaac Newton’s Binomial Theorem (Equation 5; 8).
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Equation 5. Newton’s Binomial Theorem.
The true cumulative case count from the dynamic model (I+R) is n., the

underreported cumulative case count from surveillance data is k., the detection
probability is p, and P is the probability of the parameters n and p, given the
datum k. The product of P across all the data is the model likelihood. The
result is a maximum likelihood method for estimating p, estimates of the true
number of cases in the population, and a vehicle to adjust the parameters R0
and S which produce the value n (Figure 4). Parametric adjustment using data
assimilation is a method often attributed to Gauss (9).

Because the model is networked, S is the sum of uninfected hosts in the
nodes of the network that are in contact with infected hosts. A temporally
iterative method was used to estimate the links and node size to be added to S
at various time intervals (Figure 4).

Figure 2. Adjusting parameters and link timing using maximum likelihood.

Maximum likelihood methods were used to adjust the estimate of R0, and the true case 
count n (corrected for underreporting in the surveillance data: Figure 5).
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Figure 5. Adjusting R0 using maximum likelihood.
The maximum likelihood adjustment resulted in closer fit to the data (open circles) in the

preferred model (red trace), close to the end of the sampling when the detection probability
was close to 1. In order to achieve likelihoods greater than 0, modeled true counts (n) must
be greater or equal to the observed data due to underreporting.

Model terms were used to fit predictive models to hypothetical populations (Figure 6).
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Figure 6. Predictive models a: hypothetical ship, b: hypothetical village.
Figure 6a depicts a hypothetical shipboard outbreak, with a larger population than

Diamond Princess. Figure 6b, an outbreak in a hypothetical village, with slow initial
growth transitioning to rapid exponential growth as typifies many network models. The
well-mixed model (dashed blue trace) cannot explain the first 18 days of data.

Open-source data for the CoViD-19 pandemic are available for the Diamond
Princess Cruise Ship (10). Diamond Princess began with a population of 2670
passengers and 1100 staff. By the end of the sampling period all those infected had
been removed shoreward into quarantine (11). Additionally, by the end of the
sampling period complete surveillance had been attained, so that all passengers had
been repeatedly tested for CoViD-19 using polymerase chain-reaction (PCR)
methods. It was determined that a well-mixed model could not adequately describe
the dynamics of the observed case counts, regardless of the growth rate (Figure 3).

Figure 3. The failure of the well-mixed assumption. 
A hierarchical network model was fit, including estimates of detection probability

(Figure 4).

Figure 4. Logistic model for detection probability.
Because testing frequency increased, and all passengers were tested repeatedly by

the end of the sampling period, a valid model with underreporting should converge on
testing results towards the end of the period, and estimated rates of detection should
increase across the period towards p = 1.

RESULTS – Diamond Princess Cruise Ship CoViD-19 Outbreak (4) 
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A predictive model (Figure 4) was formulated using the first 75 days of data. This
model was then used to predict the observed counts for the remainder of a 110-day period
(Figure 8).

Figure 8. Predictive model (red trace) fit to the first 75 days (blue line) of data.
The data provided an exceptionally good fit to the predictive model for observations

across the 75-day fitting period. The long period of slow growth (days 1:40) preceding
exponential growth is characteristic of network dynamics. Predicted values following day
75 (red trace) follow the data until they begin to diverge around day 100, likely due to a
decrease in daily incidence following deployment of vaccines.

Correlation between the predicted and observed counts across each time-lag from 75
through 110 days was calculated and visualized in a cross-correlogram (Figure 9).

Figure 9. Cross correlogram for predicted and observed counts, Days 75:103.
The predictive model demonstrated a very high level of reliability for 28 days

following the last day of model fitting.

Cumulative case counts for the 2022 monkeypox outbreak were reported by the
World Health Organization, and are available in open-source (12). Monkeypox is a
zoonosis, with alternative human and animal hosts (13). Data for the United States
were chosen because the data were uncomplicated by contacts with potential infected
wildlife hosts, which would require a more complicated compartmental model (14).
Data started with the first reported United States cases on June 3, 2022, and total of 79
case counts were reported, with records missing for the remainder a 118 day period.
EDDIS computer codes were extended to accommodate the missing records as part of
an ongoing generalization effort. A analytic hierarchical model was produced using
published values for R0 (13), and estimating the true cumulative case count n, the size
of the susceptible class S, and the detection probability p (Figure 7).

Figure 7. Analytic model for the 2022 US Monkeypox outbreak.
Detection was uniformly low at 0.2, indicating that the true case count (red trace)

was 5 times higher than reported cases (data: open circles). Epidemic growth included
the slow initial growth typical of network transmission, followed by a period of
exponential, then linear growth, and ending with a period of logistic growth as
vaccine deployment began to suppress the outbreak. The cumulative count for S is
also shown (brown dashed trace).

According to the selected model, monkeypox was first reported from a node of 625
susceptible individuals. It was estimated that 105000 cases of monkeypox were
present in the US by September 6, 2022, with only 19851 of these cases reported in
data (12). This has consequences for the planned subsequent deployment of vaccine.

RESULTS – 2022 US Monkeypox Outbreak

EDDIS development began as an effort to use imperfect data to estimate R0, so that data-assimilation could be used to augment
SEIR, and as a method for estimating the true case count when cases are underreported. EDDIS was then extended to provide
temporal-stepwise iteration for the parameterization of predictive models. In these respects, EDDIS development has been fully
successful. Beginning with a network SEIR model for CoVid-19, EDDIS has been generalized to analyze and predict monkeypox
outbreak data.

The combination of process (SEIR in network) with observation (detection) modeling is called a hierarchical model (7). Data
assimilation into the hierarchical model was through Newton’s Binomial Theorem (8), where model output and data were combined to
estimate parameter values and to provide maximum-likelihood.

EDDIS can be further expanded to accommodate surveillance data for a wider variety of disease agents. Future extensions will
include increased automation, reduced reliance on expert operation, the addition of a broader variety of parameter estimates, and the
addition of new test data such as surveillance records from the 2014 West African Ebolavirus Epidemic. EDDIS continues to develop
into a useful tool for enhanced situational awareness, intervention strategy, and decision-making.

DISCUSSION
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Figure 1. Transmission of a hypothetical infectious disease in a clustered population.
Transmission begins on Week 1, with detected (pink hosts) and undetected cases (purple hosts), within a small cluster (node) of susceptible

hosts (S: blue hosts). Remaining nodes are out-of-contact (black hosts) in isolation until Week 2, when links form, spreading transmission into
five nodes. Detection and transmission are spatially heterogeneous. By Week 3, most of the population is involved, with 4 nodes and some
isolated hosts remaining out-of-contact (black hosts). Transmission, susceptibility, and detection are spatially and temporally autocorrelated.
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