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Problem
Compact IMS based chemical detectors are used to detect the presence of gas phase chemical

hazards. These detectors operate in complex environments often leading to overlapping chemical

signatures and thus false alarms. Variance in IMS detectors increases the alarm window size and

complicates the development of detection algorithms. Traditional approaches rely on acquiring huge

amounts of data acquired from multiple instruments at varied conditions. This drastically increases the

time and cost of fielding chemical detectors. Figure 2 depicts the frequency of occurrence for an IMS

based detector, showing how peaks for methyl salicylate (MeS) vary. This work hypothesized that a

VAE trained on IMS spectral images will learn spectral features and could be used to generate

spectra. Here we demonstrate a VAE trained to compress IMS spectra to a two-dimensional latent

space. The resulting latent features are examined by

are comparing to features generated by principal

component analysis (PCA).Comparison of the

accuracies predicted by several classification models

demonstrates the power of a using a VAE latent

features over PC’s as inputs for ML models.

Figure 2. Frequency of occurrence of MeS peak position across five IMS 

detectors. 

Results
The resulting 2 dimensional latent feature space is shown

in figure 7. The encoder was trained using unlabeled

data, as such each feature is selected by an

unsupervised approach. Thus, the trained encoder

theoretically could be used to generate features for any

subsequent IMS spectrum of similar shape.

The distribution of the latent space was compared to

another common unsupervised feature selection

technique Principal Component Analysis (PCA). The

distribution of the PC’s is shown in figure 8 and can be

visually compared to figure 8. To compare the feature

selection techniques, various classifiers selected from the

scikit-learn package were trained and tested on the VAE

features, PCA features, and all spectral features.

The results shown in figure 9 that the VAE selected

feature(s) have improved classification accuracy over

PCA based feature selection. Additionally the 2 features

of the VAE latent space outperform all features with 5 out

of 8 classifiers.

Conclusion
Including our data preparation steps, this method of

feature selection reduces the original +ve and -ve mode

spectrum of 1676 features down to only 2 features. The

similarity to accuracy in classifiers with the full spectrum

feature list and low probability range of a predicted

spectrum, shows that the compression is relatively

lossless. Future work would seek to incorporate this

type of VAE model into generating synthetic IMS

spectra.

Figure 9. Comparison of classifier accuracy on trained on the full spectra (blue), 

VAE Features (orange), and PCA features (green). 

Figure 8. PCA distribution space for 10 class problem.

Figure 7. VAE latent feature space for 10 class problem.

Introduction
Dimensionality reduction and machine learning (ML) based feature selection improves the accuracy of

classification tasks by helping models generalize to relevant features for prediction. This down-

selection of features has an added advantage of reducing the size of data needed to make complex

ML based predictions. In our recent work, random forest (RF) feature selection was used to build a

model to generate ion mobility spectrometry (IMS) spectral features to improve classification of a long

short-term memory (LSTM) based neural network (NN). This work investigates an unsupervised deep

learning (DL) algorithm called a variational autoencoder (VAE). VAE’s use two nearly identical neural

networks to encode or compress data into a latent representation of features, then decode this data

into the original value as shown in figure 1.

Figure 1. Block diagram of simple encoder/decoder model, showing spectra as input, latent space as the encoder output, and predicted spectra as the decoder output. 

VAE BLOCK DIAGRAM

Comparing the loss of the encoder and decoder allows the VAE model to learn without a need to label

the data. VAE’s have shown promise in a number of fields to include synthetic data generation, drug

design, and image generation.

Methods
The IMS training data set consisted of 1000 positive (+ve)

and negative (-ve) detection mode spectra from 9 chemical

classes and 1 background (BKG) class totaling 10000

spectra. Figure 3 shows a typical +ve mode spectrum for

di(propylene glycol) monomethyl ether (DPM), where the

three Gaussian shaped peaks represent: the reactant ion

peak (RIP), the monomer peak, and the dimer. The features

are represented by a measurement of current expressed as

amplitude (y-axis) at intersecting coordinates of reduced

mobility (K0) (x-axis). This allowed common autoencoder

techniques, regularly used to learn important features and

representations from images, to work with this dataset.

These features are converted to spectral bins

representing an ascending count of K0 bins.

The features for each spectra are normalized

individually into a range of [0,1], then

expanded to a 2D vector of binary, where the

area under the curve of each spectra is

represented as a 1, and area above the curve

of the spectra represented as a 0. Figure 4

demonstrates the final result, depicting a heat

map of 0’s, 1’s representing the combined +ve

and -ve spectra for DPM.

While training the VAE was used to generate a latent feature space of 2 dimensions. The decoder

used binary cross entropy (BCE) to calculate the reconstruction loss and it minimized at ~150

epochs. Figure 5 shows the log-loss over all epochs for the train and test data. Figure 6 depicts a

predicted DPM spectrum, showing a heat map of probable locations for peaks. The reconstruction

loss combined with the predicted spectrum demonstrate a VAE that successfully converged.

Figure 3.Typical DPM +ve mode spectrum 

Figure 4. Heat map of DPM +ve and -ve spectrum converted to 2D vector 

Figure 5. Log-loss of decoder calculated using BCE, with a learning 

rate of 0.0001. Figure 6. Heat map of predicted DPM +ve and -ve spectrum showing most probably peak locations. 
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BCE RECONSTRUCTION LOSS OF DECODER
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